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Abstract—Acknowledging the powerful sensors on wearables
and smartphones enabling various applications to improve users’
life styles and qualities (e.g., sleep monitoring and running
rhythm tracking), this paper takes one step forward developing
FitCoach, a virtual fitness coach leveraging users’ wearable mo-
bile devices (including wrist-worn wearables and arm-mounted
smartphones) to assess dynamic postures (movement patterns
& positions) in workouts. FitCoach aims to help the user to
achieve effective workout and prevent injury by dynamically
depicting the short-term and long-term picture of a user’s
workout based on various sensors in wearable mobile devices.
In particular, FitCoach recognizes different types of exercises
and interprets fine-grained fitness data (i.e., motion strength and
speed) to an easy-to-understand exercise review score, which
provides a comprehensive workout performance evaluation and
recommendation. FitCoach has the ability to align the sensor
readings from wearable devices to the human coordinate system,
ensuring the accuracy and robustness of the system. Extensive
experiments with over 5000 repetitions of 12 types of exercises
involve 12 participants doing both anaerobic and aerobic exer-
cises in indoors as well as outdoors. Our results demonstrate that
FitCoach can provide meaningful review and recommendations
to users by accurately measure their workout performance and
achieve 93% accuracy for workout analysis.

I. INTRODUCTION

The proliferation of wearable mobile devices (e.g., smart-

watches, wrist-worn fitness bands, and smartphones mounted

on arms) has already shown its potential on improving our

life styles through a great number of applications in smart

healthcare, smart home, and smart cities. An important use

case of wearable mobile devices is providing guidelines to im-

prove people’s daily activities, for example, tracking walking

steps [18], monitoring sleep qualities [13], and estimating daily

caloric intake [14]. In this work, we take one step forward

by answering the question: Whether such wearable mobile

devices become powerful enough leveraging fine-grained sens-

ing information to perform systematic comprehensive fitness

assistance and prevent injuries.

Traditionally, fitness monitoring is performed by analyzing

the workout captured by video tapes [6] or specialized sen-

sors [7], [8]. Chang et al. [7] track free-weight exercises by

incorporating an accelerometer into a workout glove. Cheng

et al. [8] develop a technique that can recognize human

activities by attaching a sensor on users’ hips. In recent

years, smartphone apps, fitness trackers and dedicated devices,

such as Sworkit [5], Fitbit [1], Garmin watch [2] and Gym

watch [3], show the initial success of fitness monitoring. They

can perform step counts and log exercises based on users’

manual inputs. Additionally, people need to purchase dedi-

cated sensors and wear them during exercises. Hao et al [11]

present a system using smartphone and its external microphone

that detects running rhythm and improves exercise efficiency

for runners, yet the question whether or not mobile devices

can automatically distinguish different types of exercises and

provide fine-grained performance recommendation related to

exercises remains open.

Toward this end, we take one step forward to search for an

integrated mobile solution that can perform systematic fitness

monitoring and performance review. We propose FitCoach

leveraging wearable mobile devices to achieve the following

two main aspects: (i) Fine-grained Fitness Data Interpre-

tation. Recording the sensor readings on wearable mobile

devices (e.g., smartwatch or smartphone) during workout

to explore their capability of deriving fine-grained exercise

information including exercise types, the number of set and

the number of repetitions (reps) per set. The derived quanti-

tative data can be further analyzed for inferring meaningful

information. For example, higher level information can be

obtained including calories burn, body fat, body mass index,

etc. (ii) Smart Exercise Guidance. Furthermore, the derived

fitness data is of great importance to assist the users to

maintain proper exercise postures and avoid injuries. To build

muscles and gain a healthier body, it is widely recognized that

people should perform their workout properly and effectively.

FitCoach aims to not only regulate the workouts by following

the Frequency, Intensity, Time and Type (FITT) principle [16],

but also provide detailed guidelines to review the user’s pos-

ture through workout and provide recommendation in keeping

correct exercise form (e.g., in terms of speed of exercise

execution and strength).

In particular, FitCoach exploits Short Time Energy (STE)

to derive fine-grained fitness data (i.e., strength and speed of

body movements) in exercises and recognizes different types

of exercises automatically by using embedded sensors (e.g.,

accelerometer and gyroscope) on wearable mobile devices.

Rooted in the understanding of body movements in exercises,

FitCoach develops a novel metric for evaluating the quality

of each user’s exercises, exercise form score. This exercise

form score reflects the difference of strength and speed of

body movements between each repetition of an exercise based

on a reference profile. The reference profile could be either



obtained from the user’s own sensor data or built from other

people’s data (e.g., training coaches or members from the same

fitness club) through crowdsourcing platforms (e.g., fitness

club’s facebook, WhatsApp or WeChat).

The contributions of our work are summarized as follows:
• Assessing dynamic postures (movement patterns & posi-

tions) automatically during workout including anaerobic

as well as aerobic exercises.

• Achieving fine-grained exercise recognition (including

exercise types, the number of sets and repetitions) without

user involvement.

• Calculating exercise form score and providing perfor-

mance review to assist high-quality workout and prevent

injuries for both short term and in the long run.

• Aligning sensing data into the human coordinate system

to ensure high recognition accuracy and achieve system

robustness even when the real-time data possess the

different device facing direction or exercise direction

comparing to the reference profiles.

• Demonstrating the system performance involving 12 peo-

ple using both smartwatches and mobile phones in arm-

bands during both gym and outdoor workouts with high

accuracy over 90% for workout analysis.

II. RELATED WORK

Recent studies show that life experience can be improved

through implementing various types of techniques using sen-

sors and wireless technologies including activity recogni-

tion [8], [15], [17], [20], [22], [23] and physical exercises

monitoring [1], [7], [10], [11], [15].

There has been active work for activity recognition, in-

cluding daily activities [8], [15], [22] and healthcare related

activities such as eating [20] and smoking [17]. Vlasic et

al. [22] develop a full body motion capture system by using

multiple sensors attached on a human body. Cheng et al. [8]

develop a technique that can recognize activities without

training by placing a sensor on users’ hips. These studies

show that either external sensors or sensors embedded in

wearables have the capability to accurately recognize human

daily activities. Furthermore, video-based technologies can

capture and recognize human hand motion [19] but require

line-of-sight.

Another aspect of related studies focus on automatically

monitoring physical exercises. There are mobile Apps [5],

wristband [1] and solutions based on mobile devices with

sensors [7], [10], [11], [15]. Chang et al. [7] propose to track

free weight exercises by incorporating an accelerometer into

a workout glove. In addition, Ding et al. [10] propose to

recognize free-weight activities by attaching passive RFID tags

on the dumbbells. Along this line, Hao et al. [11] propose

to monitor the running rhythm by measuring breathing and

strides with headsets and smartphones. These techniques rely

on additional sensors or specific hardware. Most importantly,

whether a workout feedback and guidance can be further pro-

vided to improve exercise performance still an open question.

The commercial products also exhibit the trend to automate

the fitness monitoring, such as Garmin watch [2] and Gym
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Fig. 1. Movement in exercises can be revealed by repetitive patterns from
sensor readings of wearable mobile devices.

watch [3]. However, Garmin watch requires explicit inputs

from users, including the type of workout and the start/stop

time. Gym watch requires people to purchase dedicated

sensors and wear them during exercises. Along this trend,

FitCoach takes one step forward by utilizing the existing wear-

able devices (e.g., wrist-worn smartwatches or arm-mounted

smartphones) to automatically provide fine-grained tracking

of workout and offer exercise review and guidance to improve

fitness experience.

III. DESIGN OF FITCOACH

A. Challenges and Practical Issues
Exercise Form Correction Using Single Wearable Mo-

bile Device. It is necessary for the system to understand

the performance of a exercise through the body movements,

which is a challenging task to cope with by using a single

wearable mobile device. This is because commercial mobile

devices usually have limited low-power sensing modalities

(i.e., accelerometer, gyroscope and magnetometer). Therefore,

the system needs to be designed in such a way that can provide

exercise form corrections based on the dynamics of sensor data

resulted from the partial knowledge of the exercises.

Robust Fine-grained Exercise Differentiation. It is also

challenging to utilize sensors in wearable mobile devices

to correctly distinguish different types of exercises, since

sensor readings collected from the wearable mobile devices

are extremely noisy due to the dynamic nature of exercises.

Thus, it is important to devise a robust exercise classifier that

can eliminate the impact of noisy sensor data and capture the

fine-grained differences between different types of exercises.

Automated Wearing Orientation Alignment. During ex-

ercises, wearable mobile devices may change its facing from

the original direction from time to time. Such orientation

changes result in unstable projection of user’s body movements

in the mobile device’s coordinate system, and makes it hard

for the system to determine the pattern of body movements.

Therefore, a light-weight alignment algorithm is needed to

transform the sensor data to that in a stable orientation to

facilitate accurate exercise recognition.

B. System Overview

The main goal of FitCoach is to examine the users’ dynam-

ics (i.e., body movement patterns & intensities) in workouts

and provide detailed workout statistics to assist users to

achieve effective workouts and prevent injuries.

Given that these wearable mobile devices are worn on

the human body of either wrist or upper arm, they become
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Fig. 2. FitCoach framework.

desirable interfaces to sense exercise movements to provide

detailed workout statistics/analysis. As illustrated in Figure 1,

the repetitive pattern of body movements in exercises can be

well captured by using the inertial sensors of the wearable

mobile device (i.e., a smartwatch). FitCoach can automatically

extract fine-grained fitness information (e.g., basic statistics,

motion energy and performing period) without users’ coop-

eration and provide illustrative feedback to users, which can

also be exploited to enforce the Frequency, Intensity, Time,

Type (FITT) principle of training [16].

As illustrated in Figure 2, FitCoach takes as input time-

series of sensor readings from accelerometer and gyroscope

as well as quaternion, all of which are readily available

in off-the-shelf wearable mobile devices. We first perform

Workout Detection to filter out the sensor readings that don’t

contain workout activities based on the presence of periodicity

pattern in workout activity. The sensor readings that are

found to contain workout activities will be served to two

tasks, Workout Interpretation & Recognition and Workout

Review/Recommendation. The Workout Recognition performs

quantitative analysis to the sensor readings and identify dif-

ferent types of workouts based on the acceleration features

that can capture unique repetitive patterns of different ex-

ercises. The Workout Review/Recommendation examines the

characteristics of each rep (i.e., energy and time intervals) and

provides the novel exercise form scores as feedback to users

for performance evaluation.

Particularly, the Workout Recognition consists of four major

components: Quaternion-based Coordinate Alignment, Set/

Rep Counting and Segmentation, Accel-based Feature Extrac-

tion, and Exercise Classification. The Quaternion-based Coor-

dinate Alignment tackles the issue of dynamic orientation in

workouts, and automatically rotates sensor readings to a fixed

coordinate system. The Set/Rep Counting counts the number

of sets during the workout and the number of reps in each set

based on the magnitude of the repetitive signals resulted from

workouts. The sensor readings are further divided into small

segments corresponding to the detected reps. In each segment,
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Fig. 3. Workout detection based on a 5-second sliding window (output 1 if
the number of repetitive patterns is larger than 3 within the window, otherwise
output 0).

the Accel-based Feature Extraction derives statistics features

that capture each repetitive moving patterns of exercises from

three-axis acceleration readings. After Workout Interpretation,

the system performs Exercise Classification, which utilizes a

profile based algorithm to determine the types of exercises by

comparing the extracted features with those of pre-collected

profiles in the Profiling/Crowdsourcing Database.

In addition, the Workout Review/Recommendation aims to

provide systematic fitness monitoring and performance review

as feedback to users, which would assist the users to maintain

proper exercise gestures and avoid injuries. FitCoach takes the

segments of sensor readings identified in the Set/Rep Counting

and Segmentation as inputs, and performs the Rep Energy and

Time Interval Derivation to estimate the characteristics of body

movements in exercises (i.e., strength and frequency of the

repetitive motions). The estimated characteristics are further

utilized by the Exercise Form Score Calculation to calculate

the exercise form score for each rep, which is a novel metric

that allows the users to easily understand their performance in

the exercises.

IV. WORKOUT INTERPRETATION & RECOGNITION

A. Workout Detection

A key observation is that most regular exercises involve

repetitive arm movements. For example, jogging and walking

involve periodic arm swing, and weight lifting involves pe-

riodic pushing-ups. Such repetitive arm movements result in

regularly changing values in sensor readings. In addition, the

repetitive patterns from exercises tend to be last for a long time

period simply because people normally adopt a set-and-rep

scheme in exercise to maximize the effectiveness. Compared

to regular exercises, non-workout activities usually don’t have

such long-term repetitive pattern. Therefore, we propose to

detect workout based on determining whether there are long-

term repetitive patterns in the sensor readings.

Towards this end, we adopt an autocorrelation-based ap-

proach to examine the accelerations resulted from exercise

motions. The autocorrelation approach is a common technique

used for detecting repetitive patterns in a time series. In par-

ticular, we first apply a moving time window with the length

of w to the time series of accelerometer readings. For each

time window, we use the Magnitude of Linear Acceleration

(MLA) to estimate the linear acceleration (i.e., acceleration

without gravitational acceleration) of exercise motions. The

MLA based on accelerometer readings can be derived by the

following equation:
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Fig. 4. Illustration of the relationship between the arm movements in
a repetition and the unique pattern of accumulated energy captured by a
wearable mobile device (i.e., a smartphone in an armband).

MLA(i) =
√

(a(i)x)2 + (a(i)y)2 + (a(i)z)2 − g, (1)

where a(i)x, a(i)y and a(i)z are the acceleration of the ith
sample on the x, y and z axis of the mobile device respectively

and g is the acceleration of gravity. Note that, the MLA in

Equation 1 equals to zero when there is no motion.

Then we calculate the autocorrelation of the time series of

MLA, and use a typical peak finding algorithm [13] to find

the number of peaks in the autocorrelation, which is denoted

as Np. The number of detected repetitive patterns thus can be

derived with Nr = (Np − 1)/2, due to the symmetric nature

of the autocorrelation. Finally, to accommodate the noisy

accelerometer readings, we use a threshold-based method

to confirm the detected repetitive patterns are resulted from

workouts. The workout detection results for each window can

be derived by:

Dw =

{

1, Nr > ν
0, otherwise,

(2)

where Dw is a boolean value depicts whether the given

sensor readings within a window belong to workout or not.

Dw outputs 1 when Nr is bigger than a threshold value ν.

Figure 3 shows an example of our workout detection results

with w = 5s and ν = 3, which demonstrates that our system

can accurately detect the windows containing workouts.

B. Set/Rep Segmentation

After the Workout Detection, FitCoach integrates the win-

dows that are continuously labeled as workouts into a segment.

The time between any two segments are identified as the rest

interval, which will be provided as a part of the exercise

review. However, in order to provide fine-grained exercise

performance information, FitCoach needs to look into the data

in each set and analyzes the data based on a finer-grained

concept, repetition/rep.

We devise a motion-energy-oriented approach to accurately

estimate starting and ending time point of each repetition of

the same exercise motion within a set. The intuition behind

the approach is that each repetition usually consists of a series

of arm movements that result in a unique pattern in terms of

the accumulated motion energy: 1) the accumulated energy

starts to increase sharply from zero when the arm moves from

an initial position to an ending position; 2) the accumulated

energy drops a little when the arm pauses at the ending

position for a very short while; 3) the accumulated energy
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Fig. 5. Example of rep segmentation for 10 repetitions of dumbbell raising
exercise.

starts to increase sharply again when the arm moves back

from the ending position to the initial position; and 4) finally

the accumulated energy drops sharply when the hand stops at

the initial position for some rest. We found that this unique

pattern of accumulated motion energy can be captured by the

wearable mobile device through the Short Time Energy of

MLA. Figure 4 illustrates the relationship of the unique pattern

in the accumulated energy and the arm movements in each

repetition.

Particularly, we adopt the Short Time Energy (STE) [9] to

capture the unique energy pattern in the time series of MLA.

The basic idea of this step is to accumulate the energy of the

MLA in short sliding windows. After obtaining STE of MLA,

FitCoach applies the same peak finding algorithm used in

Section IV-A to detect the peaks in STE. Then the system finds

the local minimum point between two peaks as the ending

point of each repetition, and the data between two detected

ending points are defined as a segment of repetition. Figure 5

shows an example of determining the repetition segments

based on the local minimum points that are detected in STE of

MLA from a wearable mobile device (i.e., a smartwatch) when

the user conducts 3 sets of dumbbell rasing with 10 repetitions

per set. The results indicate that the motion-energy-based

approach can accurately separate the data for each repetition.

C. Accel-based Feature Extraction & Workout Classification

After repetition segmentation, FitCoach aims to identify the

workout type for each set. The basic idea is to build a database

with the profiles for different types of workouts before the

workout classification, then we use a profile-based approach

to determine the workout type for each rep segment in the set,

and further to infer the workout type of the entire set.

Accel-based Feature Extraction. In order to distinguish

different types of workouts, we need to find the features

that can capture the unique characteristics of each type of

workouts. Based on our extensive feature selection studies, we

finally determine nine statistical acceleration-based features

that are most useful to distinguish different types of workouts,

namely skewness, kurtosis, standard deviation, variance, most

frequently appear in the array, median, range, trimmean and

mean. To extract features without worrying about the variation

of the mobile device’s facing orientation, we first perform the

earth-reference alignment to rotate all acceleration data to the

earth coordinate system. The details of the earth-reference

alignment are provided in Section VI-A. After the world-

reference alignment, FitCoach extracts the nine acceleration-



based features from the already aligned three-axis accelera-

tions in each rep segment to describe the body movements. In

total, we extract 27 features (i.e., nine features per axis) for

each rep segment.

Light-weight Classifier. FitCoach utilizes a light-weight

machine learning based approach to identify different types of

workouts based on the acceleration-based features extracted

from each rep segment. It is light-weight because the system

only needs to determine the workout type for the first few

rep segments within a set, and the workout type of the entire

set of repetitions is identified as the majority decision based

on the classification results from the first few rep segments.

Specifically, we adopt a Support Vector Machine (SVM)

classifier [21] with radial basis function kernel. The classifier

is trained by the pre-collected profiles of different types of

workouts, which is described in Section VI-C. We note that

we utilize the classification results of the first five reps to

determine the workout type of the entire set.

V. WORKOUT REVIEW AND RECOMMENDATION

In this section, we first sketch the big picture of the

workout review provided by FitCoach through summarizing

the workout statistics, then discuss the details of our novel

exercise form score and workout performance plane.

A. Overview of Workout Review

In order to achieve effective workouts and avoid injuries,

users usually seek out personal fitness plans provided by

fitness trainers or professionals. Such fitness plans often try to

regulate the workouts by following the Frequency, Intensity,

Time and Type (FITT) principle of training, which is a set

of guidelines that instruct users to set up workout routines

fitting their goals and fitness levels while maximizing the

effects of exercises. However, most of users cannot afford

a full-time personal trainer that can coach their workouts at

any time. FitCoach fills the gap between users and the fitness

plans based on FITT principle of training by providing fine-

grained fitness information and intuitive feedback to users.

Specifically, FitCoach is able to track the following basic

workout statistics automatically including exercise type, num-

ber of reps, number of sets, time between sets, time between

sessions (training days/week) to enforce the FITT principle of

training. In addition, FitCoach further provides fine-grained

feedback, which is the exercise form score in terms of motion

energy and performance period for individual rep, to assist

users in fine-tuning their exercises gestures.

B. Exercise Form Score Design

Besides providing basic workout statistics to the users, Fit-

Coach aims to offer users a more intuitive way to understand

their performance in exercises by comparing their exercise s-

tatistics to a baseline, which could be either generated based on

the users’ own data or based on the data from croudsourcing.

Towards this end, we define a novel metric named exercise

form score, which consists of two subscores that respectively

evaluate a user’s fine-grained performance of each rep in the

exercise based on two important criteria as shown below:
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Fig. 6. Comparison of the Short Time Energy (STE) of the Magnitude of
Linear Acceleration (MLA) and the exercise form scores on the workout
review plane between user A and user B.

Motion Strength (MS). A proper exercise form should

maintain the motion strength at a certain level. For example,

too much strength may indicate that the user spend more

energy on each rep and if the weight is too heavy, it will

increase the risk of injury while too little strength may indicate

that the user spend too less energy to build muscle effectively.

We intuitively utilize the energy level of each rep to describe

the motion strength, which mean a set of reps with good

performance should maintain a stable energy level. The energy

level of each rep can be estimated by the maximum value in

obtained STE of MLA.

Performing Period (PP). A proper exercise form should

avoid too-fast or too-slow movements in order to effectively

build muscles and prevent injuries. In this work, we utilize the

time period of each rep to describe the performing period of

each rep, which reflects how fast a user performs a repetition

in exercises. Therefore, a set of reps with good performance

should also have similar time periods. The time period of

each rep can be directly obtained from the length of each

rep segment after the segmentation described in Section IV-B.

We note that the performing period provides more insights to

users. For example, users can leverage such information for

equipment weight adjustment (e.g., reduced speed of last few

reps in a set indicates that the user may be training exhausted

and need to decrease the weight or number of reps in next

set).

Exercise Form Score. Based on these two criteria, FitCoach

defines the Exercise Form Score, which consists of two sub-

scores: MS score and PP score. The subscores depict how the

testing rep deviates from the baseline in terms of the motion

strength and performing period, respectively. We discuss the

details about the baseline in the next subsection. Particularly,

the MS score for the ith rep is defined as:

Ei =
A(i)−A∗

A∗
, i = 1, 2, 3, . . . , n, (3)



where A(i) is the maximum STE of the MLA of the ith rep,

and A∗ is the motion strength baseline. Similarly, the PP score

for the ith rep is defined as:

Ti =
I(i)− I∗

I∗
, i = 1, 2, 3, . . . , n, (4)

where Ii is the length of the ith rep and I∗ is the performing

period baseline. The output exercise form score is a 2-tuple

score that can be denoted as < Ei, Ti >.

C. Personal/Crowdsourcing Baseline

The exercise form score reflects the performance of the test-

ing rep comparing to a baseline. We design two baselines that

are suitable in different scenarios, namely Personal Baseline

and Crowdsouring Baseline.

Personal Baseline. We observe that users usually can

perform exercises with standard strength and frequency at the

beginning of the workout, but the quality of the exercises

decays with time due to fatigue. Based on this observation, a

good candidate of the baseline for evaluating the performance

of a user’s workouts is the early portion of the user’s own reps.

In particular, we derive the personal baseline by averaging the

motion strength and performing period of the first k reps of

the first set in the user’s sensor data. We empirically choose

k = 5 in our work.

Crowdsourcing Baseline. The personal baseline is good for

short-term exercise performance evaluation but could be bias

to the user’s own preference. For example, a user could feel

tired at the beginning of the exercise and result in bad baseline

for evaluating the entire exercise. To tackle this problem,

we further propose the crowdsourcing baseline, which allows

users to compare their performance with the baseline from

exemplars (e.g., fitness coaches, bodybuilders, and amateur

expertise) to achieve a long-term and more accurate exercise

performance evaluation. The crowdsourcing approach is feasi-

ble because it is an increasing trend that people would like to

share their fitness data in online social network to earn credits

or build record, and more social platforms, such as WhatsApp

and WeChat, start to provide the functionality allowing people

to share their fitness data among friends.

D. Workout Review Plane

FitCoach further adopts an unique view angle of the exercise

form score to allow users to track the performance or their each

rep in a illustrative way. In particular, we define a review plane

in which the x axis and y axis are the MS score and PP score,

respectively. According to Equation 3 and 4, the Original

represents the rep having the exactly same performance as the

chosen baseline, and every exercise form score < Ei, Ti >
corresponding to the ith rep can be mapped to a position in

the the review plane. Apparently, the rep having its position

closer to the Original has better performance, and the more

reps close to the Original the better.

Figure 6 compares the workout reviews of two different

users (i.e., User A an User B) in a set of lateral raising

exercises (i.e., 15 reps in one set). Figure 6(a) and (c)

respectively depict STE of MLA of two users’ reps, which
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Fig. 7. Three coordinate systems.

shows that User A has more stable energy levels and time

lengths for each repetition than User B. Figure 6(b) and (d)

respectively illustrate two users’ exercise form scores based on

their personal baselines in the review planes, which shows that

the score points of User A are concentrated around the Original

while the score points of User B are scattered around the

second quadrant of the review plane. The observation indicates

that User B have much higher motion strength and longer

performing period comparing to the user’s first few reps, and

thus have worse performance than User A.

VI. IMPLEMENTATION

A. Quaternion-based Coordinate Alignment

In workout monitoring scenarios, users wearing wearable

mobile devices basically involve three different coordinate

systems as illustrated in Figure 7, namely, mobile device

coordinate, earth coordinate, and human coordinate. The

sensor readings from a mobile device are defined in the device

coordinate and thus result in non-fixed projection of the user’s

body movements defined in the human coordinate. In order

to address this issue, FitCoach adopts a quaternion-based

approache to dynamically convert sensor readings from the

mobile device coordinate either to the human coordinate or to

a coordinate system having the fixed mapping to the human

coordinate.
1) Earth-reference Alignment: For exercise recognition in

a gym, the orientation of wearable mobile devices may change

due to rotation caused by arm movement. Therefore, our

system needs to convert sensor readings from the mobile

device coordinate to the earth coordinate first. Specifically, we

convert the sensor readings from the mobile device coordinate

to the earth coordinate by using the quaternion-based rotation

pe = qmepmq
−1

me, where pm is the sensor reading vector

(e.g., accelerations) in the mobile device coordinate, and qme
is the quaternion reading from the mobile device coordinate

to the earth coordinate, which can be obtained from the

device directly. q−1

me is the conjugate quaternion of qme. After

conversion, the converted sensor readings pe are in the earth

coordinate and can provide stable patterns of body movements

during exercises to enable our exercise recognition discussed

in Section IV-C.

2) User-reference Alignment: We notice that using quater-

nion to align sensor reading from wearable coordinate to earth

coordinate solves the different wearing orientation of wearable

devices. Furthermore, we should also consider when people

doing workout in gym with different facing directions.

Specifically, we convert the sensor readings from the mo-

bile device coordinate to the human coordinate by using

the quaternion-based rotation ph = qmhpmq
−1

mh, where pm
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Fig. 8. Facing direction estimation of four running directions: toward North
(N), South (S), West (W) and East (E).

and ph is the sensor reading vector in the mobile device

coordinate and the human coordinate respectively. q−1

mh is the

conjugate quaternion of qmh, qmh is the quaternion readings

from the mobile device to the human coordinate, which can be

calculated using Hamilton product: qmh = q−1

he qme, where qme
is the quaternion reading from the mobile device coordinate to

the earth coordinate, which can be obtained from the device

directly. q−1

he is the conjugate quaternion of qhe, and qhe is the

quaternion readings from the human to the earth coordinate,

which can be derived from the estimated facing direction.

More specifically, we can derive qhe = [w, x, y, z] using the

Euler angles in earth coordinate which is defined as:
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(5)

where rotation angles φ, θ and ψ are the row, pitch and yaw
respect to earth reference respectively as shown in Figure 7.

We assume that people are running on the horizontal ground

and therefore φ and θ are equal to zero and we only need to

calculate facing direction ψ (i.e., yaw).

B. Facing Direction Estimation

We observe that in rest time and aerobic exercises, the

direction of the user’s arm swing is usually in line with the

user’s facing direction, suggesting that we can exploit the arm

swing direction to estimate the user’s facing direction. For

anaerobic exercise, users can simply swing their arms for a

few times to assist FitCoach for facing direction estimation.

In particular, FitCoach segments each arm swing using

rep segmentation as described in Section IV-B, then converts

the acceleration readings from mobile device’s coordinate

into earth coordinate as discussed in Section VI-A1. After

conversion, we can double integrate the acceleration projected

to the x and y axes in the earth coordinate to derive the moving

distance of the arm along the x and y axes, respectively. In

this work, we define the arm swing direction as the counter-

clockwise rotation around the z-axis from y-axis in the earth

coordinate (i.e., North direction), which is similar to the

definition of yaw in Euler angles. We first calculate the

included angle δ between the displacement of x-axis and y-axis

caused by arm swing by using δ = |arctan (sy/sx)|, where

sx, sy are the distance accumulated from acceleration in x-

axis and y-axis respectively by using Trapezoidal rule [12].

Note that δ is ranging from 0◦ to 90◦ and then we need to

convert it from 0◦ to 360◦. Therefore, we need to decide the
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Fig. 9. Illustration of 12 types of exercises1.

quadrant Q of arm swing direction, that is defined in Cartesian

system where x and y are East and North in earth reference

respectively, to convert it to ψ ranging from 0◦ to 360◦ as:

ψ =















270◦ + δ; if Q = 1,
90◦ − δ; if Q = 2,
90◦ + δ; if Q = 3,
270◦ − δ; if Q = 4,

(6)

where Q can be determined based on the order of maximum

and minimum values (i.e., peak and trough) on x and y axes

of accelerometer.

We evaluate the proposed facing direction estimation by

asking a volunteer to run toward four different directions (i.e.,

north, south, east and west in earth reference). Figure 8 shows

the 10-round estimation results for each direction. We find that

the estimated results are along with the four running directions

and good enough in FitCoach, the little bias is caused by

the fact that people swing their arms naturally while running

which is not perfectly stick to their facing directions.

C. Profiling Database Construction

When users start FitCoach for the first time, they are asked

to build a profiling database for the exercise recognition by

performing the particular types of exercises. FitCoach extracts

the accl-based features as discussed in Section IV-C, and asks

the user to manually label the corresponding exercise types.

We note that FitCoach allows users to wear the wearable

mobile devices with flexible facing orientation when con-

structing the profiling database, because the quaternion-based

coordinate alignment always converts sensor readings to a

coordinate system that has the fixed mapping relationship to

the human coordinate during exercises.

VII. PERFORMANCE EVALUATION

In this section, we first present the experimental methodol-

ogy and metrics we used to evaluate FitCoach. We then eval-

uate the performance and robustness of FitCoach using both

smartwatch and smartphone during people’s fitness workout.

A. Experimental Methodology

1) Wearable Mobile Devices: We evaluate FitCoach with

two types of wearable mobile devices (i.e., a smartphone of

Samsung Galaxy Note 3 and a smartwatch of LG Watch

Urbane). Both devices use Android and can collect sensor

1by courtesy of app Fitness Buddy.
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Fig. 10. Comparison of the performance of recognizing 12 exercises between using a smartwatch and a smartphone.

readings of accelerometer, gyroscope and quaternion vector.

In our experiment, the participants are asked to wear the

smartwatch on the wrist with their own wearing preferences

and the phone is mounted on their upper arms using a jogging

armband. During exercise, sensor readings are collected with

the sampling rate of 100Hz. The ground truth of workout

statistics are recorded by a volunteer.

2) Fitness Data Collection: We recruit 12 volunteers from

colleagues, friends and students from research lab. Among

them, 7 out of 12 go to gym regularly and the rest go to

gym less frequently. For over a half year experiments, all 12

volunteers are asked to wear the smartwatch and smartphone

simultaneously at the same arm, which is for the performance

comparison between smartwatch and smartphone of the same

exercise. In addition, a volunteer accompany with them to

record the ground truth. Specifically, we study 12 different

exercise types, as illustrated in Figure 9. The tested exercises

include both anaerobic exercises, including weight machines

and free weights, and aerobic exercises in which around 2
hours running is tested in both indoors (e.g., treadmill) and

outdoors. In total, we collect over 5000 repetitions of 12 types

of exercises involving 12 participants.

B. Evaluation Metrics

We use the following metrics to evaluate FitCoach:

Precision. Given Ne reps of a exercise/ gesture type e in

our collected data, precision of recognizing the exercise type

e is defined as Precisione = NT
e /(NT

e +MF
e ), where NT

e is

the number of instances collectedly recognized as exercise e.
MF
e is the number of sets corresponding to other exercises

that are mistakenly recognized as exercise e.
Recall. Recall of the exercise type e is defined as the ratio of

the reps that are correctly recognized as the exercise e over all

reps of exercise type e. which is defined as Recalle = NT
e /Ne.

F1-score. F1-score is the harmonic mean of precision and

recall, which reaches its best value at 1 and worst at 0. In our

multi-class scenario, the F1-score for a specific gesture e was

defined as F
(e)
1 = 2× precisione×recalle

precisione+recalle
.

Rep Detection Rate. Given all reps of an exercise type

e, rep detection rate is defined as the ratio of the number of

detected reps of e over all reps of e the user performed.

C. Workout Recognition Using Smartwatch

We first evaluate the performance of FitCoach on exer-

cise recognition using smartwatch. Figure 10(a) shows the

confusion matrix of the recognizing exercise types by using

smartwatch in FitCoach. An entry Mij denotes the percentage

between the number of exercise i was predicted as gesture

j and the total number of i. The average accuracy is 95%
with standard deviation 5% over all 12 types of exercises. We

find that recognizing results from E1 and E10 are relatively

low, which are 85% and 89% respectively. This may be

caused by some volunteers who go to gym less frequently

and cannot maintain the exercise in a correct form for all

reps. For example, E10 (i.e., Dumbbell Biceps Curl) is free

weight exercise and some volunteers may not maintain their

arm within a fixed space all the time. For exercise E1 (i.e.,

Barbell Bench Press), some volunteers easily perform too fast

or too slow depending on the weights.

In addition, Figure 10(b) presents the precision, recall and

F1 score for each exercise type, respectively. The average

value of precision, recall and F1 score of each exercise are all

around 95%. Although the recall of exercise E4 (i.e., running)

is 100%, we observe that it has the lowest precision among all

12 exercises, which indicates other exercises are more likely to

be mistakenly classified as this exercise. This may be caused

by the fact that arm swings are naturally moving in space

and some volunteers freely perform some type of exercise too

fast which also involve all axes sensor readings. The above

results support that FitCoach can extract accurate information

for exercise type recognition through wrist-worn smartwatch.

D. Workout Recognition Using Smartphone

We then evaluate workout recognition by using smartphone

since arm-mounted phone have been widely used in people’s

daily exercise. We present the results from smartphone in

Figure 10 (c) and Figure 10 (d). Results show 91% average

recognition accuracy for exercise recognition. We find exercise

E4 still has the lowest precision which is consistent with the

results collected from smartwatch since the volunteers wear

smartwatch and smartphone on the same arm to make fair

comparison.

Comparison between Smartwatch and Smartphone. Fit-

Coach presents high accuracy of workout recognition for

both smartphone and smartwatch. Comparing results between

smartwatch and smartphone, we found that results obtained

from smartwatch are better than results from smartphone. The

average recognition accuracy of smartwatch is 95% whereas

smartphone has a 91% average recognition accuracy. This

observation is due to the fact that for exercise recognition, the

space scope of the arm gesture trajectories was constrained

by the machine for some exercise and most of the exercises
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Fig. 11. Detection rate of exercise repetitions by using smartwatch.

require users to use their hands to grab and therefore the

smartwatch on the wrist are close to hand and reflect more

similar movement as machine or dumbbell.

E. Rep Detection Rate

Finally, we evaluate FitCoach by showing our detection

rate for exercises. For workout exercise detection, the average

detection accuracy reaches 99%. The lowest detection rate

occurs at running exercise E4 (i.e., step detection) on a

treadmill but it still achieves around 95% detection accuracy as

shown in Figure 11. Such relative low detection rate of running

exercise is cased by occasionally holding on the handrails or

wiping perspiration while running. The above results show that

FitCoach can accurately detect reps, and such high detection

rate supports that fine-grained statistical information provided

by FitCoach is reliable.

VIII. CONCLUSION

In this work, we propose FitCoach, an integrated mobile

solution that can conduct systematic fitness monitoring and

provide performance review based on a single off-the-shelf

wearable device (e.g., wrist-worn wearables or arm-mounted

smartphones). FitCoach has the capability to perform fine-

grained exercise recognition including exercise types, the

number of sets and repetitions by using inertial sensors

from wearable devices without user involvement. Two novel

metrics, exercise form score and workout review plane, are

developed to provide effective review and recommendation

for achieving effective workout and preventing injuries. To

ensure the system accuracy and robustness, FitCoach uses

the earth/human coordinate system to align and integrate

sensor readings from various device orientations. Extensive

experiments involving 12 participants doing workout for over

half a year time period demonstrate that FitCoach successfully

takes one step forward to provide the integrated fitness mon-

itoring system with over 90% workout analysis accuracy. By

integrating other existing sensors such as shoe sensors [4] and

ankle-based belt, FitCoach can be extended to monitor non-

arm based exercises. In addition, FitCoach can further reduce

the energy consumption by utilizing location information. The

system only needs to start sampling when detecting gym or

fitness center nearby through the assistant of GPS and we left

this part in our future work.
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